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Abstract: In this paper, the optimal dividend (subject to transaction costs) and rein-

surance (with two reinsurers) problem is studied in the limit diffusion setting. It is

assumed that transaction costs and taxes are required when dividends occur, and that

the premiums charged by two reinsurers are calculated according to the exponential

premium principle with different parameters, which makes the stochastic control prob-

lem nonlinear. The objective of the insurer is to determine the optimal reinsurance and

dividend policy so as to maximize the expected discounted dividends until ruin. The

problem is formulated as a mixed classical-impulse stochastic control problem. Explicit

expressions for the value function and the corresponding optimal strategy are obtained.

Finally, a numerical example is presented to illustrate the impact of the parameters as-

sociated with the two reinsurers’ premium principle on the optimal reinsurance strategy.
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1. Introduction

In the actuarial literature, insurance risk model with dividend payments was first

considered by de Finetti [7]. In his paper, the optimal expected discounted sum of

dividend payments until the time of ruin was studied in a simple discrete time model.

Since then, many researchers carried out similar analysis for various risk models with

more general and realistic features. For example, optimal dividend problems with

transaction costs and controlled risk exposure can be found in Cadenillas et al. [3], He

and Liang [11, 12], Løkka and Zervos [15], Bai et al. [2], Meng and Siu [16, 17], Scheer

and Schmidli [21], Peng et al. [20] and Guan and Liang [9].

In most of the literature, premium is assumed to be calculated via the expected

value principle for mathematical convenience. However, it is natural to argue that two

risks with same mean may look very different from each other, and hence the associated

premiums should also be different. The exponential premium principle, which is the

so-called zero utility principle, plays an important role in insurance mathematics and
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actuarial practice. It has many nice properties, including additivity with respect to

independent risks. It is also widely used in mathematical finance to price various

insurance products in the market. We refer the readers to Young and Zariphopoulou

[26], Young [25], Moore and Young [18] and Musiela and Zariphopoulou [19]. For the

optimal reinsurance problems under other premium principles, one can see Schmidli

[22], Young [24], Kaluszka [13, 14], Zhou and Yuen [27] and Yao et al. [23].

In practice, insurance companies often purchase reinsurance to reduce the risk of

their insurance portfolios. For simplicity, it is usually assumed in the literature that

an insurer can only buy reinsurance from one reinsurer. However, it is commonly seen

that some insurance company would like to diversify its risk by purchasing reinsurance

from multiple reinsurance companies who may have different risk attitudes. Thus,

it is meaningful to study the optimal reinsurance models with multiple reinsurers.

Recently, optimal reinsurance problems with multiple reinsurers under the criterion of

minimizing value at risk (VaR) or conditional value at risk (CVaR) of the insurer’s

total risk exposure were studied by Asimit et al. [1] and Chi and Meng [5].

Under the exponential premium principle, the optimal dividend problem without

transaction costs is investigated in Chen et al. [4], where only one reinsurer is consid-

ered. In this paper, we study the optimal dividend problem subject to transaction costs

and optimal reinsurance with two reinsurers in the framework of diffusion model. We

assume that the premiums charged by the two reinsurers are calculated according to

the exponential premium principle with different parameters, which is closely related to

a kind of nonlinear classical-impulse stochastic control problem. Under the exponential

premium principle, the risk control becomes nonlinear which makes the problem more

complicated than that under the expected value premium principle. In view of the

complexity, we consider proportional reinsurance only in our study. Our objective is

to maximize the expected discounted dividends until ruin. Explicit expressions for the

value function and the corresponding optimal strategies are derived.

The rest of this paper is organized as follows. In Section 2, we present the mathe-

matical formulation of the model with proportional reinsurance and dividend payments

under the exponential premium principle. In Section 3, we give the quasi-variational

inequalities (QVI) and the verification theorem of the problem. In Section 4, we give

the solution to the optimization problem. We then give some comments in Section 5,

and provide a numerical example in Section 6.
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2. The Model

In this paper, all stochastic quantities are defined on a large enough complete prob-

ability space (Ω,F ,Ft ,P), where the filtration Ft represents the information available

at time t and any decision made is based on this information.

Our results will be formulated within the controlled diffusion model. But we start

with the classical Cramér-Lundberg model, in which the surplus process of an insurer is

given by Ut = x+ ct−
∑Nt

i=1 Yi, where x ≥ 0 is the initial surplus, c > 0 is the premium

rate, {N(t), t ≥ 0} is a homogeneous Poisson process with intensity λ, and {Yi, i ≥
1} is a sequence of positive i.i.d. random variables with common distribution F (y).

We denote by µ1 = E(Yi) its mean and by MY (r) = E(erYi) its moment generating

function. It is usually assumed that the Cramér-Lundberg conditions hold, i.e., there

exists 0 < r∞ ≤ ∞ such that MY (r) < ∞ if r < r∞ and that limr→r∞ MY (r) = +∞.

Here, we assume that the insurer is allowed to reduce the risk by purchasing pro-

portional reinsurance with two reinsurers. Specifically, for a claim Y occurring at time

t, the first reinsurer pays (1 − bt)Y , the second reinsurer pays (1 − ut)btY , and the

insurer itself pays utbtY . We denote by C(bt, ut) the net income rate of the insurer at

time t. Then the surplus process in the presence of proportional reinsurance (for fixed

b and u) can be written as

U b,u
t = x+ C(b, u)t−

Nt∑
i=1

ubYi. (2.1)

It is well known that (2.1) can be approximated by a pure diffusion model Xb,u
t with the

same drift and volatility. Specifically, if b and u change with time and are stochastic,

then the controlled surplus process Xb,u
t with the strategy (bt, ut) satisfies

dXb,u
t = [C(bt, ut)− λutbtµ1]dt+

√
λµ2utbtdWt, (2.2)

with Xb,u
0 = x, where {Wt, t ≥ 0} is a standard Brownian motion, and µ1, µ2 are the

first two moments of Yi.

In addition to purchasing proportional reinsurance, the insurance portfolio pays

dividends to its shareholders under some dividend strategy. Here, we take into account

a fixed transaction cost K > 0 and a tax rate 1−k (0 < k < 1) which are incurred each

time the dividend is paid out. Since every dividend results in a fixed transaction cost

K > 0, the insurance company should not pay out dividends continuously. Instead, it

should pay dividends at some discrete time points. Then, a strategy is described by

α = (bt;ut; τ1, τ2, . . . , τn, . . . ; ξ1, ξ2, . . . , ξn, . . .),
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where τn and ξn denote the times and amounts of dividends. For a strategy α, we

denote by Xα
t the associated surplus process whose dynamics is given by

Xα
t = x+

∫ t

0

µ(bs, us)ds+

∫ t

0

√
λµ2bsusdWs −

∞∑
n=1

I(τn<t)ξn, (2.3)

where

µ(bs, us) = C(bs, us)− λusbsµ1. (2.4)

The ruin time of the controlled process Xα
t is than defined as

τα = inf{t ≥ 0 : Xα
t < 0}.

Definition 2.1. A strategy α is said to be admissible if

(i) bt and ut are {Ft}t≥0-adapted processes with 0 ≤ bt ≤ 1, 0 ≤ ut ≤ 1 for all t ≥ 0.

(ii) τn is a stopping time with respect to {Ft}t≥0 and 0 ≤ τ1 < τ2 < · · · < τn < · · · a.s.
(iii) ξn is measurable with respect to Fτn− and 0 < ξn ≤ Xα

τn−, n = 1, 2, . . ..

(iv) P (limn→∞ τn ≤ T ) = 0, for all T ≥ 0.

The set of all admissible control strategies is denoted by Π. For a given admissible

strategy α, we define the return function as

Vα(x) = E
[ ∞∑

n=1

e−δτn(kξn −K)I{τn<τα} | X0− = x
]
= Ex

[ ∞∑
n=1

e−δτn(kξn −K)I{τn<τα}

]
,

which represents the expected total discounted dividends received by the shareholders

until the ruin time when the initial surplus is x, where δ > 0 is a priori given discount

factor. The objective is to find the optimal return function (or value function), which

is defined as

V (x) = sup
α∈Π

Vα(x), (2.5)

and to find the optimal strategy α∗ such that V (x) = Vα∗(x) for all x ≥ 0.

3. QVI and verification theorem

For a function ϕ : [0,∞) 7→ [0,∞), we define the maximum operator M as

Mϕ(x) := sup{ϕ(x− η) + kη −K : 0 < η ≤ x},

and the operator Lb,u as

Lb,uϕ(x) :=
1

2
λµ2b

2u2ϕ′′(x) + µ(b, u)ϕ′(x).
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Remark 3.1. For the value function V (x), it is easy to see that MV (x) ≤ V (x).

If the value function of (2.5) is sufficiently smooth, then by standard arguments in

stochastic control (see, e.g., Fleming and Soner [8]), the corresponding QVI is given by

max
{

max
0≤b≤1, 0≤u≤1

Lb,uV (x)− δV (x), MV (x)− V (x)
}
= 0, x > 0, (3.1)

with boundary condition V (0) = 0. Given a solution v(x) to (3.1), we can construct

the following Markov control strategy.

Definition 3.1. The strategy αv = (bv;uv; τ v1 , τ
v
2 , · · · , τ vn , · · · ; ξv1 , ξv2 , · · · , ξvn, · · · ) is

called the QVI strategy associated with v if the associated process Xv given by (2.3)

with x ≥ 0 satisfies

(bvt , u
v
t ) = arg max

0≤b≤1, 0≤u≤1
Lb,uv(Xv

t ) on {v(Xv
t ) > Mv(Xv

t )},

τ v1 = inf{t ≥ 0 : v(Xv
t ) = Mv(Xv

t )},

ξv1 = arg sup
0<η≤Xv

τv1

{v(Xv
τv1

− η) + kη −K},

and for every n ≥ 2,

τ vn = inf{t > τ vn−1 : v(X
v
t ) = Mv(Xv

t )},

ξvn = arg sup
0<η≤Xv

τvn

{v(Xv
τvn

− η) + kη −K}.

Throughout this paper, we assume that the reinsurance premium is calculated ac-

cording to the exponential premium principle. That is, for a risk U , the amount of

premium πa(U) is determined by

πa(U) =
1

a
lnE(eaU),

where the constant a > 0 measures the risk aversion of the reinsurance company. We

allow the two reinsurers have different risk aversion, and the parameters for them are

a1 and a2, respectively. Then µ(bt, ut) defined in (2.4) becomes

µ(bt, ut) = c− λ

a1
(MY (a1(1− bt))− 1)− λ

a2
(MY (a2(1− ut)bt)− 1)− λutbtµ1. (3.2)

Remark 3.2. For the expected premium principle, diversifying between different

reinsurers is never optimal for the insurer. The reinsurer with the smallest safety

loading will always be the one providing the cheapest insurance, and the insurer will
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always buy reinsurance from this reinsurer. However, for the exponential premium

principle, the situation is completely different. For example, for a risk X, it is easy to

see that πa(X) ≥ 2πa(
X
2
), which means that diversifying the risk between two reinsurers

with the same parameter a is always better than sticking with one of them only. Besides,

for two reinsurers with parameters a1 and a2 (a1 < a2), it is still possible that πa1(X) >

πa1(bX) + πa2((1 − b)X) for some 0 < b < 1. In this case, both reinsurers play a role

in the optimal reinsurance design.

Remark 3.3. (i) Let µ(b, u) be the function defined in (3.2). Note that

max
0≤b≤1

µ(b, 0) = µ(
a1

a1 + a2
, 0) = c− λ

a1 + a2
a1a2

(
MY (

a1a2
a1 + a2

)− 1
)
.

If

c > λ
a1 + a2
a1a2

(MY (
a1a2

a1 + a2
)− 1), i.e., µ(

a1
a1 + a2

, 0) > 0,

then we can choose b = a1/(a1 + a2) and u = 0 in (2.2) such that Xt = x+ µ(a1/(a1 +

a2), 0)t. We can see that there exists arbitrage opportunity in the market. So, we

assume that c ≤ λa1+a2
a1a2

(MY (
a1a2
a1+a2

)− 1). On the other hand, the positive safety loading

condition requires that c > λµ1. Therefore, in the rest of this paper, we assume that the

following condition holds:

λµ1 < c ≤ λ
a1 + a2
a1a2

(
MY (

a1a2
a1 + a2

)− 1
)
. (3.3)

(ii) For any b, u ∈ [0, 1], we have

|µ(b, u)| ≤ c+
λ

a1
(MY (a1)− 1) +

λ

a2
(MY (a2)− 1) + λµ1 , M.

Then similar to Proposition 3.1 of Cadenillas et al. [3], it is not difficult to derive that

V (x) ≤ k(x+ |M |/λ).

We now present the verification theorem.

Theorem 3.2 (Verification Theorem). Let v(x) ∈ C1((0,∞)) be a solution to (3.1) at

all the points with the possible exception of some point where the second derivative may

not exist. Suppose there exists U > 0 such that v(x) is twice continuously differentiable

on (0, U) and v(x) is linear on [U,∞). Then V (x) ≤ v(x), x ≥ 0. Furthermore, if the

QVI strategy αv associated with v(x) is admissible, then v(x) coincides with the value

function V (x) and αv is the optimal strategy, i.e., V (x) = v(x) = Vαv(x), x ≥ 0.
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Proof. Similar to the proof of Theorem 3.4 in Cadenillas et al. [3], it is not difficult

to see that equations (3.17) and (3.18) of Cadenillas et al. [3] still hold for our model.

So, one can apply Ito’s formula (even if the function v′′ might have a discontinuity of

the first order at the point U) to get equations similar to those shown on page 187

of Cadenillas et al. [3], by replacing Luv, µus and σus by Lb,uv − δv, µ(bs, us) and
√
λµ2bsus, respectively. Then, the remaining steps are the same as those in Cadenillas

et al. [3].

4. Solution to the optimization problem

In order to derive explicit solution to the optimization problem, we consider the

following two cases:

(1) c < λa1+a2
a1a2

(MY (
a1a2
a1+a2

)− 1);

(2) c = λa1+a2
a1a2

(MY (
a1a2
a1+a2

)− 1).

4.1. Case 1

4.1.1. Construction of solution

In this subsection, we try to construct a solution to (3.1) which satisfies the condi-

tions in Theorem 3.2.

We first assume that there exists a strictly increasing solution W (x) to (3.1) which

is continuously differentiable on (0,∞) and twice continuously differentiable on (0, x1),

where x1 = inf{x ≥ 0 : MV (x) = V (x)} (all of these will be proved later). Then, (3.1)

with V replaced by W for 0 ≤ x < x1 can be rewritten as

max
0≤b≤1, 0≤u≤1

{
1

2
λµ2b

2u2W ′′(x) + µ(bt, ut)W
′(x)− δW (x)

}
= 0. (4.1)

Let b(x) and u(x) be the maximizer of the left-hand side of (4.1) over all b, u ∈
(−∞,∞). Differentiating (4.1) with respect to u and b respectively, we get

−W ′′(x)

W ′(x)
=

M ′
Y (a2(1− u(x))b(x))− µ1

µ2b(x)u(x)
, (4.2)

−W ′′(x)

W ′(x)
=

M ′
Y (a1(1− b(x)))− (1− u(x))M ′

Y (a2(1− u(x))b(x))− u(x)µ1

µ2b(x)[u(x)]2
. (4.3)

Combining (4.2) and (4.3), we have M ′
Y (a1(1− b(x))) = M ′

Y (a2(1− u(x))b(x)). Then,

a1(1− b(x)) = a2(1− u(x))b(x), i.e., b(x)u(x) =
(a1 + a2)b(x)− a1

a2
. (4.4)
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Substituting (4.2) and (4.4) into (4.1), we have

g(b(x))W ′(x)− δW (x) = 0. (4.5)

where

g(b) = −λ[(a1 + a2)b− a1][M
′
Y (a1(1− b))− µ1]

2a2
+ c− λµ1[(a1 + a2)b− a1]

a2

−(
1

a1
+

1

a2
)λ[MY (a1(1− b))− 1].

Differentiating (4.5) with respect to x, we obtain[dg(b(x))
dx

− δ
]
W ′(x) + g(b)W ′′(x) = 0. (4.6)

Using (4.2) and (4.4) once again, we have

W ′(x)
{dg(b(x))

dx
− δ − g(b(x))

a2[M
′
Y (a1(1− b(x)))− µ1]

µ2[(a1 + a2)b(x)− a1]

}
= 0. (4.7)

Since W ′(x) > 0, and

dg(b(x))

dx
=

λ

2a2
h(b(x))b′(x),

where

h(b(x)) = (a1 + a2)[M
′
Y (a1(1− b(x)))− µ1] + a1[(a1 + a2)b(x)− a1]M

′′
Y (a1(1− b(x))),

it follows from (4.7) that

b′(x) =
2a2{δµ2[(a1 + a2)b(x)− a1] + a2g(b(x))[M

′
Y (a1(1− b(x)))− µ1]}

λµ2[(a1 + a2)b(x)− a1]h(b(x))
. (4.8)

In view of W (0) = 0 and (4.5), we know that b(0) , b0 is a solution to g(b) = 0.

Lemma 4.1. The function g(b) is strictly increasing on [a1/(a1 + a2), 1], and there

exists a unique solution b0 of g(b) = 0 on (a1/(a1 + a2), 1].

Proof. For any b ∈ [a1/(a1 + a2), 1], we have

dg(b)

db
=

λ

2a2

{
(a1 + a2)[M

′
Y (a1(1− b))− µ1] + a1[(a1 + a2)b− a1]M

′′
Y (a1(1− b))

}
> 0,

which implies that g(b) is increasing on [a1/(a1+a2), 1]. Due to Remark 3.1, the result

follows from

g(
a1

a1 + a2
) = µ(

a1
a1 + a2

, 0) < 0, and g(1) = c− λµ1 > 0.
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Let

G(b) =

∫ b

b0

λµ2[(a1 + a2)y − a1]h(y)

2a2{δµ2[(a1 + a2)y − a1] + a2g(y)[M ′
Y (a1(1− y))− µ1]}

dy. (4.9)

Since g(y) > 0 for all b0 < y ≤ 1, the integrand in the right-hand side of (4.9) is

positive on [b0, 1]. It is easy to see that G(b) is increasing on [b0, 1], which implies that

the inverse of G(b) exists on [b0, 1]. Furthermore, it is obvious that [G(b(x))]′ = 1, so

b(x) = G−1(x+ k) for some constant k. Since G(b0) = 0, we have k = G(b0) = 0 which

results in

b(x) = G−1(x), 0 ≤ x ≤ G(1).

By (4.4), we have

u(x) =
(a1 + a2)b(x)− a1

a2b(x)
.

Let b∗(x) and u∗(x) be the maximizer of the left-hand side of (4.1) over all b, u ∈ [0, 1].

Since b(G(1)) = u(G(1)) = 1, we guess that

b∗(x) =

{
G−1(x), 0 ≤ x ≤ G(1),
1 , x > G(1),

and u∗(x) =

{
(a1+a2)G−1(x)−a1

a2G−1(x)
, 0 ≤ x ≤ G(1),

1 , x > G(1).

(4.10)

For 0 ≤ x ≤ G(1), (4.2) and (4.10) imply that

(lnW ′(x))′ =
a2[µ1 −M ′

Y (a1(1−G−1(x)))]

µ2[(a1 + a2)G−1(x)− a1]
,

which leads to

W (x) = q1

∫ x

0

exp
(∫ z

G(1)

a2[µ1 −M ′
Y (a1(1−G−1(y)))]

µ2[(a1 + a2)G−1(y)− a1]
dy

)
dz, (4.11)

where the constant q1 > 0 will be determined later.

For G(1) < x ≤ x1, (4.1) becomes

1

2
λµ2W

′′(x) + (c− λµ1)W
′(x)− δW (x) = 0,

which has the following general solution

W (x) = q2e
r+(x−G(1)) + q3e

r−(x−G(1)), (4.12)

where q2 and q3 are free constants, and

r+ =
−(c− λµ1) +

√
(c− λµ1)2 + 2λδµ2

λµ2

, r− =
−(c− λµ1)−

√
(c− λµ1)2 + 2λδµ2

λµ2

.
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For x > x1, by the definition of x1, we guess that

W (x) = W (x̃) + k(x− x̃)−K, (4.13)

where x̃ < x1 is a constant that needs to be determined below.

We next try to determine the constants q1, q2, q3, x̃ and x1. By the continuity of W ′

and W ′′ at G(1), we obtain

q2r+ + q3r− = q1, q2r
2
+ + q3r

2
− = 0,

which results in q2 = q1b1 and q3 = q1b2, where

b1 =
r−

r+(r− − r+)
> 0, b2 =

r+
r−(r+ − r−)

< 0. (4.14)

Inspired by Bai et al. [2] or Cadenillas et al. [3], we will determine the unknown

parameters q1, x̃ and x1 in the way that

W ′(x̃) = W ′(x1) = k,

and ∫ x1

x̃

(k −W ′(y))dy = K.

Define an auxiliary function U(x) as

U(x) =

{
exp

( ∫ x

G(1)

a2[µ1−M ′
Y (a1(1−G−1(y)))]

µ2[(a1+a2)G−1(y)−a1]
dy

)
, 0 ≤ x ≤ G(1),

b1r+e
r+(x−G(1)) + b2r−e

r−(x−G(1)), x > G(1),

which is equal to W ′(x) for 0 < x ≤ x1. For x ∈ [0, G(1)), it is not difficult to see that

U ′(x) < 0, U ′′(x) > 0.

For x > G(1), we have

U ′(x) = b1r
2
+e

r+(x−G(1)) + b2r
2
−e

r−(x−G(1)) = b1r
2
+[e

r+(x−G(1)) − er−(x−G(1))] > 0,

U ′′(x) = b1r
3
+e

r+(x−G(1)) + b2r
3
−e

r−(x−G(1)) > 0.

So, the function U(x) is convex on (0,∞). Since U ′(G(1)) = 0, the function U(x)

attains its minimum at x = G(1) with U(G(1)) = 1. From Figure 1, we have the

following conclusions:
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x

y
y = k

y = qU (x)

K

y = qU (x)

Figure 1: The graph of qU(x). The area between the straight line y = k and the graph of qU(x) is
equal to K.

(i) For any fixed q ∈ (0, k], there always exists x̂q ≥ G(1) such that qU(x̂q) = k.

Furthermore, if q ↓ 0, then x̂q ↑ ∞;

(ii) Let q̄ = k/U(0) < k. If q ∈ [q̄, k], qU(0) ≥ k ≥ q, then there exists x̃q ∈ [0, G(1)]

such that qU(x̃q) = k. Besides, x̂q is strictly decreasing with respect to q; x̃q is

strictly increasing with respect to q; and x̂q = x̃q = G(1) for q = k.

Based on (i) and (ii), we consider

I1(q) =

∫ x̂q

x̃q

(k − qU(y))dy, I2(q) =

∫ x̂q

0

(k − qU(y))dy.

Then, it is not difficult to see that I1(q) is strictly decreasing with respect to q on [q̄, k]

and 0 = I1(k) ≤ I1(q) ≤ I1(q̄) ∈ (0,∞), and that I2(q) is strictly decreasing on [0, k],

and

0 >

∫ G(1)

0

k(1− U(y))dy = I2(k) ≤ I2(q) ≤ I2(0) = ∞.

Note that if I1(q̄) > K, then there exists a unique q∗ ∈ (q̄, k) such that I1(q
∗) = K.

Let x1 = x̂q∗ and x̃ = x̃q∗ . Recalling that for any x ≤ x1, W
′(x) = qU(x), we have

W ′(x̃q∗) = W ′(x̂q∗) = k, W (x̂q∗) = W (x̃q∗) + k(x̂q∗ − x̃q∗)−K;

and that if I1(q̄) ≤ K, then there exists a unique q∗ ∈ (0, k) such that I2(q
∗) = K. Let

x1 = x̂q∗ and x̃ = 0. Then, we have

W ′(x̂q∗) = k, W (x̂q∗) = W (0) + kx̂q∗ −K.

11



These together (4.11)-(4.13) yield

W (x) =


q∗

∫ x

0
exp

( ∫ z

G(1)

a2[µ1−M ′
Y (a1(1−G−1(y)))]

µ2[(a1+a2)G−1(y)−a1]
dy

)
dz, 0 ≤ x < G(1),

q∗[b1e
r+(x−G(1)) + b2e

r−(x−G(1))], G(1) ≤ x < x̂q∗ ,
W (x̃q∗) + k(x− x̃q∗)−K, x ≥ x̂q∗ ,

(4.15)

where x̃q∗ = 0 if I1(q̄) ≤ K, and b1, b2 are given in (4.14).

Theorem 4.1. The function W (x) of (4.15) is continuously differentiable on (0,∞)

and twice continuously differentiable on (0, x̂q∗) ∪ (x̂q∗ ,∞). Furthermore, W (x) is a

solution to the QVI of (3.1).

Proof. Here, we only prove the case of I1(q̄) > K. For the case of I1(q̄) ≤ K, it

can be derived using similar arguments. From its construction, it is easy to see that

W (x) is continuously differentiable on (0,∞), and twice continuously differentiable on

(0, x̂q∗)∪ (x̂q∗ ,∞). To complete the proof, we need to show that W (x) is a solution to

the QVI of (3.1).

Similar to the technique of Cadenillas et al. [3], we first prove that MW (x) < W (x)

for 0 < x < x̂q∗ , and that MW (x) = W (x) for x > x̂q∗ .

Since U ′(x) < 0 for 0 < x < G(1), we see that W ′(x) = q∗U(x) is a strictly

decreasing function on [0, G(1)]. Let f(η) = W (x− η) + kη −K, 0 < η ≤ x. Note that

W ′(x̃q∗) = k. Hence, for any x ≤ x̃q∗ , we have f ′(η) = −W ′(x − η) + k < 0, which in

turn yields

MW (x) = sup
0<η≤x

f(η) = f(0+) = W (x)−K < W (x).

For x̃q∗ ≤ x < x̂q∗ , f
′(x− x̃q∗) = −W ′(x̃q∗) + k = 0, then we obtain

MW (x) = f(x− x̃q∗) = W (x̃q∗) + k(x− x̃q∗)−K = W (x̂q∗)− k(x̂q∗ − x) < W (x),

where the last inequality follows from W ′(x) < k for any x ∈ (x̃q∗ , x̂q∗).

We now show that MW (x) = W (x) for x > x̂q∗ . If η ∈ (0, x− x̂q∗ ], then

W (x− η) + kη −K = W (x̃q∗) + k(x− η − x̃q∗)−K + kη −K = W (x)−K < W (x).

If η ∈ (x− x̂q∗ , x], then

W (x− η) + kη −K = W (x̂q∗ − [η − (x− x̂q∗)]) + k[η − (x− x̂q∗)]−K + k(x− x̂q∗)

≤ W (x̂q∗) + k(x− x̂q∗) = W (x),

where the equality holds if and only if η = x− x̃q∗ . So, we have MW (x) = W (x) for

x > x̂q∗ .

12



We next prove that{
max0≤b≤1, 0≤u≤1 Lb,uW (x)− δW (x) = 0, 0 < x < x̂q∗ ,
max0≤b≤1, 0≤u≤1 Lb,uW (x)− δW (x) < 0, x > x̂q∗ .

(4.16)

For 0 ≤ x < G(1), we only need to prove that W (x) satisfies (4.5) with b(x) =

G−1(x). From its construction, we know that W (x) satisfies (4.6). This implies that

W (x) should satisfy (4.5) with a constant (not necessarily equal to 0) on the right-hand

side. Since g(b0) = 0,W (0) = 0 and

W ′(0) = q∗ exp
(∫ G(1)

0

a2[M
′
Y (a1(1−G−1(y)))− µ1]

µ2[(a1 + a2)G−1(y)− a1]
dy

)
≤ q∗ exp

(a2[M ′
Y (a1)− µ1]G(1)

µ2[(a1 + a2)b0 − a1]

)
< ∞,

the right-hand side of (4.5) tends to 0 when x → 0. It follows that W (x) satisfies (4.5)

for all 0 ≤ x < G(1).

For G(1) ≤ x ≤ x̂q∗ ,

W ′(x) = q∗U(x) ≥ q∗ > 0, W ′′(x) = q∗U ′(x) > 0.

Then, for any fixed b ∈ [0, 1], we have

∂Lb,uW (x)

∂u
= λµ2b

2uW ′′(x) + λb[M ′
Y (a2(1− u)b)− µ1]W

′(x) > 0, ∀u ∈ [0, 1].

Therefore,

Lb,uW (x) ≤ Lb,1W (x) =
1

2
λµ2b

2W ′′(x) + [c− λ

a1
(MY (a1(1− b))− 1)− λµ1b]W

′(x).

On the other hand,

∂Lb,1W (x)

∂b
= λµ2bW

′′(x) + λ[M ′
Y (a1(1− b))− µ1]W

′(x) > 0, ∀b ∈ [0, 1].

As a result, we obtain

max
0≤b≤1, 0≤u≤1

Lb,uW (x) = L1,1W (x) =
1

2
λµ2W

′′(x) + (c− λµ1)W
′(x).

Finally, it follows from the construction of W (x) that

max
0≤b≤1, 0≤u≤1

Lb,uW (x)− δW (x) =
1

2
λµ2W

′′(x) + (c− λµ1)W
′(x)− δW (x) = 0.

13



For x > x̂q∗ , since W (x) = W (x̃q∗) + k(x− x̃q∗)−K, we have

max
0≤b≤1, 0≤u≤1

Lb,uW (x)− δW (x) = k max
0≤b≤1, 0≤u≤1

µ(b, u)− δW (x)

= kµ(1, 1)− δW (x) = k(c− λµ1)− δW (x) < k(c− λµ1)− δW (x̂q∗)

<
1

2
λµ2W

′′(x̂q∗−) + k(c− λµ1)− δW (x̂q∗)

= L1,1W (x̂q∗−)− δW (x̂q∗) = 0.

Hence, (4.16) holds.

4.1.2. The value function and the optimal policy

Let

b∗t =

{
G−1(X∗

t ), 0 ≤ X∗
t ≤ G(1),

1 , X∗
t > G(1),

u∗
t =

{
(a1+a2)G−1(X∗

t )−a1
a2G−1(X∗

t )
, 0 ≤ X∗

t ≤ G(1),

1 , X∗
t > G(1),

and {τ ∗n, ξ∗n, n ≥ 1} are defined as follows:

(i) If I1(q̄) > K, then we define

τ ∗1 = inf{t > 0 : X∗
t = x̂q∗}, ξ∗1 = x̂q∗ − x̃q∗ ,

when the initial surplus 0 < x < x̂q∗ ,

τ ∗1 = 0, ξ∗1 = x− x̃q∗ ,

when the initial surplus x ≥ x̂q∗ , and

τ ∗n = inf{t > τ ∗n−1 : X
∗
t = x̂q∗}, ξ∗n = x̂q∗ − x̃q∗ ,

for every n ≥ 2, where X∗
t is given by

X∗
t = x+

∫ t

0

µ(b∗t , u
∗
t )dt+

∫ t

0

√
λµ2b

∗
tu

∗
tdWt − (x̂q∗ − x̃q∗)

∞∑
n=1

I(τ∗n<t),

when the initial surplus 0 < x < x̂q∗ , and

X∗
t = x+

∫ t

0

µ(b∗t , u
∗
t )dt+

∫ t

0

√
λµ2b

∗
tu

∗
tdWt − (x− x̃q∗)I(τ∗1<t) − (x̂q∗ − x̃q∗)

∞∑
n=2

I(τ∗n<t),

when the initial surplus x ≥ x̂q∗ ;
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(ii) If I1(q̄) ≤ K, then we define

τ ∗1 = inf{t > 0 : X∗
t = x̂q∗}, ξ∗1 = x̂q∗ ,

when the initial surplus 0 < x < x̂q∗ ,

τ ∗1 = 0, ξ∗1 = x,

when the initial surplus x ≥ x̂q∗ , and

τ ∗n = ∞, ξ∗n = 0,

for every n ≥ 2, where X∗
t is given by

X∗
t = x+

∫ t

0

µ(b∗t , u
∗
t )dt+

∫ t

0

√
λµ2b

∗
tu

∗
tdWt, t ≤ τ ∗1 ,

when the initial surplus 0 < x < x̂q∗ .

Theorem 4.2. The value function V (x) is given by (4.15) and the strategy α∗ =

(b∗t ;u
∗
t ; τ

∗
1 , τ

∗
2 , · · · ; ξ∗1 , ξ∗2 , · · · ) is the corresponding optimal policy.

Proof. It follows from Definition 3.1 and the arguments in the proof of Theorem 4.1

that α∗ = (b∗t ;u
∗
t ; τ

∗
1 , τ

∗
2 , · · · ; ξ∗1 , ξ∗2 , · · · ) defined above is the QVI strategy associated

with W (x) which is given by (4.15). Besides, it is easy to see that α∗ is admissible.

Hence, the optimal result is an immediate consequence of Theorem 3.2.

4.2. Case 2

In this subsection, we consider Case 2 with

c = λ
a1 + a2
a1a2

(MY (
a1a2

a1 + a2
)− 1).

To show that W (x) of (4.15) is the value function, and that α∗ in Theorem 4.2 is

the optimal policy, one can apply arguments similar to those used in the previous

subsection. However, from Lemma 4.1, we know that b0 = a1/(a1 + a2) in Case 2.

Consequently, the integrand on the right-hand side of (4.9) and (4.11) might have a

singularity. Therefore, we need to show that the integrals in the right-hand side of

(4.9) and (4.11) make sense in this case.

Proposition 4.3.

lim
x→0

b′(x) =
2a2δµ2 + λa2[M

′
Y (

a1a2
a1+a2

)− µ1]
2

λµ2(a1 + a2)[M ′
Y (

a1a2
a1+a2

)− µ1]
. (4.17)
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Proof. Note that b(x) → a1/(a1 + a2) and g(b(x)) → g(a1/(a1 + a2)) = 0 as x → 0.

Applying l’Hospital’s rule to the right-hand side of (4.8), we get

lim
x→0

b′(x) = lim
b→ a1

a1+a2

2a2{δµ2[(a1 + a2)b− a1] + a2g(b)[M
′
Y (a1(1− b))− µ1]}

λµ2[(a1 + a2)b− a1]h(b)

=
2a2
λµ2

δµ2(a1 + a2) + a2g
′( a1

a1+a2
)[M ′

Y (
a1a2
a1+a2

)− µ1]

(a1 + a2)2[M ′
Y (

a1a2
a1+a2

)− µ1]

=
2a2δµ2 + λa2[M

′
Y (

a1a2
a1+a2

)− µ1]
2

λµ2(a1 + a2)[M ′
Y (

a1a2
a1+a2

)− µ1]
.

Proposition 4.4. Let G(b) be given in (4.9). Then, G(1) < ∞.

Proof. Since

G(1) =

∫ 1

a1
a1+a2

λµ2[(a1 + a2)y − a1]h(y)

2a2{δµ2[(a1 + a2)y − a1] + a2g(y)[M ′
Y (a1(1− y))− µ1]}

dy,

and the integrand in the above expression tends to

λµ2(a1 + a2)[M
′
Y (

a1a2
a1+a2

)− µ1]

2a2δµ2 + λa2[M ′
Y (

a1a2
a1+a2

)− µ1]2
, y → a1

a1 + a2
.

Hence, the results follows from Proposition 4.3.

Proposition 4.5. Let W (x) be given in (4.11). Then,

W ′(x) = q1 exp
(∫ x

G(1)

a2[µ1 −M ′
Y (a1(1− b(y)))]

µ2[(a1 + a2)b(y)− a1]
dy

)
∼ x−n, x → 0, (4.18)

where

n =
λ[M ′

Y (
a1a2
a1+a2

)− µ1]
2

2δµ2 + λ[M ′
Y (

a1a2
a1+a2

)− µ1]2
< 1,

and the notation f(x) ∼ g(x) means that f(x)/g(x) → c1 for some constant c1 > 0 as

x → 0.

Proof. It follows from (4.17) that

b(x)− b(0) =
2a2δµ2 + λa2[M

′
Y (

a1a2
a1+a2

)− µ1]
2

λµ2(a1 + a2)[M ′
Y (

a1a2
a1+a2

)− µ1]
x+ o(x), x → 0. (4.19)

As a result, we obtain

W ′(x) ∼ exp
(∫ x

G(1)

a2[µ1 −M ′
Y (a1(1− b(y)))]

µ2[(a1 + a2)b(y)− a1]
dy

)
∼ exp

(
−

∫ x

G(1)

a2[M
′
Y (

a1a2
a1+a2

)− µ1]
2λµ2

µ2(2a2δµ2 + λa2[M ′
Y (

a1a2
a1+a2

)− µ1]2
1

y
dy

)
∼ x

−
λ[M′

Y (
a1a2
a1+a2

)−µ1]
2

2δµ2+λ[M′
Y

(
a1a2
a1+a2

)−µ1]
2

, x → 0.
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According to Proposition 4.5, we have the integrability at 0 of the integrand on the

right-hand side of (4.11). Besides, from the proof of Theorem 4.1, we should verify

that the right-hand side of (4.5) tends to 0 when x → 0. Due to (4.18) and (4.19), we

have

W ′(x) ∼
(
b(x)− a1

a1 + a2

)−n

, x → 0.

Therefore, it is sufficient to show that

lim
b→ a1

a1+a2

g(b)
(
b− a1

a1 + a2

)−n

= 0.

Applying l’Hospital’s rule, we get

lim
b→ a1

a1+a2

[
c− (

1

a1
+

1

a2
)λ[MY (a1(1− b))− 1

](
b− a1

a1 + a2

)−n

= lim
b→ a1

a1+a2

λ(a1 + a2)M
′
Y (a1(1− b))

a2n(b− a1
a1+a2

)n−1
= 0,

which implies that the right-hand side of (4.5) tends to 0 as x → 0.

5. Some comments

The problem studied in Chen et al. [4] can be extended to the case of two reinsurers,

which is also the case without transaction costs of this paper. Take the unbounded

dividend rates for example. Following the arguments in Chen et al. [4], we know that

the value function V (x) satisfies (4.1) for 0 ≤ x < x1 and V ′(x) = 1 for x ≥ x1, where

x1 = inf{x ≥ 0 : V ′(x) ≤ 1} = G(1). Since V ′(x1) = 1, it is easy to see that q1 = 1 in

(4.11) and V (x1) =
c−λµ1

δ
by (4.5). Therefore, the value function V (x) is given by

V (x) =

{ ∫ x

0
exp

( ∫ z

G(1)

a2[µ1−M ′
Y (a1(1−G−1(y)))]

µ2[(a1+a2)G−1(y)−a1]
dy

)
dz, 0 ≤ x ≤ G(1),

c−λµ1

δ
+ x−G(1) , x > G(1),

and the optimal reinsurance strategy is given by (4.10) .

6. Numerical example

The influence of k and K on the critical levels x̂q and x̃q are clear from Figure 1.

Since the effects of a1 and a2 (risk aversion parameters of the reinsurers) on the critical

levels x̂q and x̃q are rather complicated, we give a numerical example to illustrate the

effects of a1 and a2 on the optimal reinsurance strategy in this section. In the example,
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we assume that the claim sizes are exponentially distributed with parameter 1, and

set λ = 1, c = 3/2, and δ = 0.05. By fixing a1 = 1 and taking a2 = 0.6, 0.8, 1, 1.5, 2,

the optimal proportions on [0, G(1)] for the insurer and two reinsurers are exhibited in

Figures 2-4, and the values of G(1) are given in Table 1.

From Figures 2-4, we see that the effect of a2 wears off as a2 increases. Figures 2

and 4 show that, when a2 changes, the impact on the optimal proportions of the insurer

and the second reinsurer is significant for small initial surplus, and becomes weaker for

large initial surplus. Finally, we observe from Figure 3 that for the first reinsurer, the

impact of a2 on 1−b∗(x) increases to a certain level as the initial surplus increases, and

remains at that level for large initial surplus (the lines in Figure 3 are almost parallel

when the initial surplus is more than 1.5).

a2 0.6 0.8 1 1.5 2
G(1) 3.8242 4.3072 4.5250 4.8028 4.8402

Table 1: The values of G(1) for a1 = 1
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Figure 2: The optimal retention level function y = u∗(x)b∗(x) of the insurer for a2 = 0.6, 0.8, 1, 1.5, 2
from bottom to top (at the beginning of the function)
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